feat(common): implement processor feature detection on Windows and MacOS, more accurate OsTime* functions on Windows

This commit is contained in:
phaneron 2025-03-21 03:14:51 -04:00
parent 93bdaa6c9e
commit bc34c481d3
15 changed files with 836 additions and 60 deletions

View file

@ -4,9 +4,17 @@ file(GLOB COMMON_SOURCES
"datastore/*.cpp" "datastore/*.cpp"
"mempool/*.cpp" "mempool/*.cpp"
"objectalloc/*.cpp" "objectalloc/*.cpp"
"processor/*.cpp"
"processor/win/*.cpp"
"processor/mac/*.cpp"
"processor/linux/*.cpp"
"ref/*.cpp" "ref/*.cpp"
"string/*.cpp" "string/*.cpp"
"thread/*.cpp" "thread/*.cpp"
"time/*.cpp"
"time/win/*.cpp"
"time/mac/*.cpp"
"time/linux/*.cpp"
"xml/*.cpp" "xml/*.cpp"
) )

6
common/Processor.hpp Normal file
View file

@ -0,0 +1,6 @@
#ifndef COMMON_PROCESSOR_HPP
#define COMMON_PROCESSOR_HPP
#include "common/processor/Processor.hpp"
#endif

View file

@ -1,53 +0,0 @@
#include "common/Time.hpp"
#if defined(WHOA_SYSTEM_WIN)
#include <windows.h>
#elif defined(WHOA_SYSTEM_MAC)
#include <mach/mach_time.h>
#include <unistd.h>
#elif defined(WHOA_SYSTEM_LINUX)
#include <chrono>
#include <unistd.h>
#endif
uint64_t OsGetAsyncTimeMs() {
#if defined(WHOA_SYSTEM_WIN)
return GetTickCount();
#elif defined(WHOA_SYSTEM_MAC)
static mach_timebase_info_data_t timebase;
if (timebase.denom == 0) {
mach_timebase_info(&timebase);
}
uint64_t ticks = mach_absolute_time();
return ticks * (timebase.numer / timebase.denom) / 1000000;
#elif defined(WHOA_SYSTEM_LINUX)
auto now = std::chrono::steady_clock::now();
uint64_t ticks = std::chrono::duration_cast<std::chrono::milliseconds>(now.time_since_epoch()).count();
return ticks;
#endif
}
uint64_t OsGetAsyncTimeMsPrecise() {
#if defined(WHOA_SYSTEM_WIN)
// TODO QueryPerformanceCounter implementation
return OsGetAsyncTimeMs();
#else
return OsGetAsyncTimeMs();
#endif
}
void OsSleep(uint32_t duration) {
#if defined(WHOA_SYSTEM_WIN)
Sleep(duration);
#endif
#if defined(WHOA_SYSTEM_MAC) || defined(WHOA_SYSTEM_LINUX)
usleep(duration);
#endif
}

View file

@ -1,12 +1,6 @@
#ifndef COMMON_TIME_HPP #ifndef COMMON_TIME_HPP
#define COMMON_TIME_HPP #define COMMON_TIME_HPP
#include <cstdint> #include "common/time/Time.hpp"
uint64_t OsGetAsyncTimeMs();
uint64_t OsGetAsyncTimeMsPrecise();
void OsSleep(uint32_t duration);
#endif #endif

View file

@ -0,0 +1,6 @@
#include "common/processor/Processor.hpp"
uint32_t OsGetProcessorFeatures() {
int32_t vendorID;
return OsGetProcessorFeaturesEx(vendorID);
}

View file

@ -0,0 +1,16 @@
#ifndef COMMON_PROCESSOR_PROCESSOR_HPP
#define COMMON_PROCESSOR_PROCESSOR_HPP
#include <cstdint>
uint32_t OsGetProcessorCount();
uint32_t OsGetProcessorFeatures();
uint32_t OsGetProcessorFeaturesEx(int32_t& vendorID);
void OsSystemEnableCpuLog();
uint64_t OsGetProcessorTicksPerSecond();
#endif

View file

@ -0,0 +1,27 @@
#if defined(WHOA_SYSTEM_LINUX)
#include "common/processor/Processor.hpp"
#include <unistd.h>
uint32_t OsGetProcessorCount() {
return sysconf(_SC_NPROCESSORS_ONLN);
}
uint32_t OsGetProcessorFeaturesEx(int32_t& vendorID) {
// TODO
vendorID = 1;
return 0x80000000;
}
void OsSystemEnableCpuLog() {
// TODO
}
uint64_t OsGetProcessorTicksPerSecond() {
// TODO
return 1000ULL;
}
#endif

View file

@ -0,0 +1,58 @@
#if defined(WHOA_SYSTEM_MAC)
#include "common/processor/Processor.hpp"
#include <sys/types.h>
#include <sys/sysctl.h>
uint32_t OsGetProcessorCount() {
uint32_t count = 1;
uint32_t logicalcpu;
int32_t length = sizeof(logicalcpu);
if (sysctlbyname("hw.logicalcpu", &logicalcpu, &length, nullptr, 0) == 0) {
count = logicalcpu;
}
return count;
}
uint32_t OsGetProcessorFeaturesEx(int32_t& vendorID) {
// https://en.wikipedia.org/wiki/Mac_transition_to_Intel_processors
vendorID = 1;
static uint32_t features = 0;
if (!features) {
features = 0x80000000;
int32_t feature;
int32_t length;
length = sizeof(feature);
if (sysctlbyname("hw.optional.mmx", &feature, &length, nullptr, 0) == 0 && feature) {
features |= 0x2;
}
length = sizeof(feature);
if (sysctlbyname("hw.optional.sse", &feature, &length, nullptr, 0) == 0 && feature) {
features |= 0x4;
}
length = sizeof(feature);
if (sysctlbyname("hw.optional.sse2", &feature, &length, nullptr, 0) == 0 && feature) {
features |= 0x10;
}
length = sizeof(feature);
if (sysctlbyname("hw.optional.altivec", &feature, &length, nullptr, 0) == 0 && feature) {
features |= 0x20;
}
}
return features;
}
void OsSystemEnableCpuLog() {
}
uint64_t OsGetProcessorTicksPerSecond() {
// TODO
return 1000ULL;
}
#endif

View file

@ -0,0 +1,440 @@
#if defined(WHOA_SYSTEM_WIN)
#include "common/processor/Processor.hpp"
#include "common/time/Time.hpp"
#include <cstring>
#include <storm/Log.hpp>
#include <bc/os/File.hpp>
#include <windows.h>
uint32_t OsGetProcessorCount() {
SYSTEM_INFO systeminfo;
memset(&systeminfo, 0, sizeof(systeminfo));
GetSystemInfo(&systeminfo);
return systeminfo.dwNumberOfProcessors ? systeminfo.dwNumberOfProcessors : 1;
}
// NOTE: this is is an x86-only structure
struct ProcessorFeatures {
// vendor ID string
uint32_t std_0b; // 00
uint32_t std_0d; // 04
uint32_t std_0c; // 08
// standard
uint32_t std_0a; // 0C
uint32_t std_1b; // 10
uint32_t std_1d; // 14
uint32_t std_4a; // 18
// extended
uint32_t ext_0a; // 1C
uint32_t ext_1c; // 20
uint32_t ext_1d; // 24
uint32_t ext_8c; // 28
// processor brand string
uint32_t ext_2a; // 2C
uint32_t ext_2b; // 30
uint32_t ext_2c; // 34
uint32_t ext_2d; // 38
uint32_t ext_3a; // 3C
uint32_t ext_3b; // 40
uint32_t ext_3c; // 44
uint32_t ext_3d; // 48
uint32_t ext_4a; // 4c
uint32_t ext_4b; // 50
uint32_t ext_4c; // 54
uint32_t ext_4d; // 58
};
// MinGW implementation
#if defined(__MINGW32__) && (defined(__x86_64__) || defined(__i386__))
#include <cpuid.h>
#define COMMON_GET_PROCESSOR_FEATURES_IMPL 1
int32_t IOsGetProcessorFeatures(ProcessorFeatures& features) {
memset(&features, 0, sizeof(ProcessorFeatures));
uint32_t eax;
uint32_t ebx;
uint32_t ecx;
uint32_t edx;
int32_t result = 0;
if (__get_cpuid(0, &eax, &ebx, &ecx, &edx)) {
result = 1;
features.std_0a = eax;
features.std_0b = ebx;
features.std_0d = edx;
features.std_0c = ecx;
if (features.std_0a >= 4) {
__get_cpuid(4, &eax, &ebx, &ecx, &edx);
features.std_4a = eax;
}
__get_cpuid(1, &eax, &ebx, &ecx, &edx);
features.std_1d = edx;
features.std_1b = ebx;
__get_cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
if (eax > 0x80000000) {
result = 2;
features.ext_0a = eax;
if (features.ext_0a >= 0x80000008) {
__get_cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
features.ext_8c = ecx;
}
if (features.ext_0a >= 0x80000002) {
__get_cpuid(0x80000002, &eax, &ebx, &ecx, &edx);
features.ext_2a = eax;
features.ext_2b = ebx;
features.ext_2c = ecx;
features.ext_2d = edx;
}
if (features.ext_0a >= 0x80000003) {
__get_cpuid(0x80000003, &eax, &ebx, &ecx, &edx);
features.ext_3a = eax;
features.ext_3b = ebx;
features.ext_3c = ecx;
features.ext_3d = edx;
}
if (features.ext_0a >= 0x80000004) {
__get_cpuid(0x80000004, &eax, &ebx, &ecx, &edx);
features.ext_4a = eax;
features.ext_4b = ebx;
features.ext_4c = ecx;
features.ext_4d = edx;
}
__get_cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
features.ext_1d = edx;
features.ext_1c = ecx;
}
}
return result;
}
#endif
#if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64))
// MSVC implementation
#include <intrin.h>
int32_t IOsGetProcessorFeatures(ProcessorFeatures& features) {
memset(&features, 0, sizeof(ProcessorFeatures));
int cpuinfo[4];
int32_t result = 0;
__cpuid(0, cpuinfo);
if (cpuinfo[0]) {
result = 1;
features.std_0a = cpuinfo[0];
features.std_0b = cpuinfo[1];
features.std_0d = cpuinfo[3];
features.std_0c = cpuinfo[2];
if (features.std_0a >= 4) {
__cpuid(4, cpuinfo);
features.std_4a = cpuinfo[0];
}
__cpuid(1, cpuinfo);
features.std_1d = cpuinfo[3];
features.std_1b = cpuinfo[0];
__cpuid(0x80000000, cpuinfo);
if (cpuinfo[0] > 0x80000000) {
result = 2;
features.ext_0a = cpuinfo[0];
if (features.ext_0a >= 0x80000008) {
__cpuid(0x80000008, cpuinfo);
features.ext_8c = cpuinfo[2];
}
if (features.ext_0a >= 0x80000002) {
__cpuid(0x80000002, cpuinfo);
features.ext_2a = cpuinfo[0];
features.ext_2b = cpuinfo[1];
features.ext_2c = cpuinfo[2];
features.ext_2d = cpuinfo[3];
}
if (features.ext_0a >= 0x80000003) {
__cpuid(0x80000003, cpuinfo);
features.ext_3a = cpuinfo[0];
features.ext_3b = cpuinfo[1];
features.ext_3c = cpuinfo[2];
features.ext_3d = cpuinfo[3];
}
if (features.ext_0a >= 0x80000004) {
__cpuid(0x80000004, cpuinfo);
features.ext_4a = cpuinfo[0];
features.ext_4b = cpuinfo[1];
features.ext_4c = cpuinfo[2];
features.ext_4d = cpuinfo[3];
}
__cpuid(0x80000001, cpuinfo);
features.ext_1d = cpuinfo[3];
features.ext_1c = cpuinfo[2];
}
}
return result;
}
#define COMMON_GET_PROCESSOR_FEATURES_IMPL 1
#endif
#if !defined(COMMON_GET_PROCESSOR_FEATURES_IMPL)
// placeholder implementation
int32_t IOsGetProcessorFeatures(ProcessorFeatures& features) {
memset(&features, 0, sizeof(ProcessorFeatures));
return 0;
}
#endif
static uint64_t s_cpuTicksPerSecond;
static int32_t s_cpuLogEnabled;
static int32_t s_haveProcessorFeatures;
static uint32_t s_processorFeatures;
static uint32_t s_processorCount;
static uint32_t s_processorCores;
static uint32_t s_processorVendor;
static uint32_t s_processorSockets;
static const char s_vendorIDs[] = {
'G', 'e', 'n', 'u', 'i', 'n', 'e', 'I', 'n', 't', 'e', 'l',
'A', 'u', 't', 'h', 'e', 'n', 't', 'i', 'c', 'A', 'M', 'D',
'C', 'y', 'r', 'i', 'x', 'I', 'n', 's', 't', 'e', 'a', 'd',
'C', 'e', 'n', 't', 'a', 'u', 'r', 'H', 'a', 'l', 'l', 's'
};
void OsSystemEnableCpuLog() {
s_cpuLogEnabled = 1;
}
void IOsSystemCpuLog(ProcessorFeatures& features) {
if (s_cpuLogEnabled) {
OsCreateDirectory("Logs", 0);
HSLOG log;
SLogCreate("Logs\\cpu.log", 0, &log);
if (s_processorVendor == 4) {
SLogWrite(log, "UNABLE TO IDENTIFY CPU");
SLogClose(log);
return;
}
SLogWrite(log, "vendor: %d", s_processorVendor);
SLogWrite(log, "features: %08X", s_processorFeatures & 0x7fffffff);
SLogWrite(log, "sockets: %d", s_processorSockets);
SLogWrite(log, "cores: %d", s_processorCores);
SLogWrite(log, "processors: %d", s_processorCount);
char vendorID[13];
strncpy(vendorID, reinterpret_cast<char*>(&features), 12);
vendorID[12] = '\0';
SLogWrite(log, "vendor id string= %s", vendorID);
SLogWrite(log, "standard (%d): 1b=%08X 1d=%08x 4a=%08X", features.std_0a, features.std_1b, features.std_1d, features.std_4a);
SLogWrite(log, "extended (%d): 1c=%08X 1d=%08x 8c=%08X", features.ext_0a & 0x7fffffff, features.ext_1c, features.ext_1d, features.ext_8c);
auto brand = reinterpret_cast<const char*>(&features.ext_2a);
while (*brand && *brand == ' ') {
brand++;
}
SLogWrite(log, "processor brand string= %s", brand);
SLogClose(log);
}
}
int32_t IOsParseProcessorFrequency(const char* str) {
if (!str) {
return 0;
}
auto length = strlen(str);
// z
auto z = &str[length - 1];
if (z <= str) {
return 0;
}
if (*z != 'z') {
return 0;
}
// Hz
auto H = &str[length - 2];
if (H <= str) {
return 0;
}
if (*H != 'H') {
return 0;
}
// GHz, MHz, THz (!)
auto s = &str[length - 3];
if (s <= str) {
return 0;
}
double scale;
if (*s == 'G') {
scale = 1000000000.0;
} else if (*s == 'M') {
scale = 1000000.0;
} else if (*s == 'T') {
scale = 1000000000000.0;
} else {
return 0;
}
// quantity (floating-point)
auto q = &str[length - 4];
char quantitystr[48];
memset(quantitystr, 0, sizeof(quantitystr));
quantitystr[47] = '\0';
for (auto p = quantitystr + 46; q > str; p--) {
if (!*q || (*q < '0' || *q > '9') && *q != '.') {
break;
}
*p = *q;
q--;
}
auto quantity = atof(quantitystr);
if (quantity == 0.0) {
return 0;
}
s_cpuTicksPerSecond = static_cast<uint64_t>(quantity * scale);
return 1;
}
int32_t IOsGetPowerProfFrequency() {
auto library = LoadLibrary(TEXT("powrprof.dll"));
if (!library) {
return 0;
}
int32_t result = 0;
typedef NTSTATUS (*LPCALLNTPOWERINFORMATIONFUNC)(POWER_INFORMATION_LEVEL, PVOID, ULONG, PVOID, ULONG);
auto CallNtPowerInformation = reinterpret_cast<LPCALLNTPOWERINFORMATIONFUNC>(GetProcAddress(library, "CallNtPowerInformation"));
if (CallNtPowerInformation) {
struct PROCESSOR_POWER_INFORMATION {
ULONG Number;
ULONG MaxMhz;
ULONG CurrentMhz;
ULONG MhzLimit;
ULONG MaxIdleState;
ULONG CurrentIdleState;
};
PROCESSOR_POWER_INFORMATION info[4];
if (!CallNtPowerInformation(ProcessorInformation, nullptr, 0, &info, sizeof(info))) {
s_cpuTicksPerSecond = 1000000LL * static_cast<int64_t>(info[0].MaxMhz);
result = 1;
}
}
FreeLibrary(library);
return result;
}
uint32_t OsGetProcessorFeaturesEx(int32_t& vendorID) {
if (s_haveProcessorFeatures) {
vendorID = s_processorVendor;
return s_processorFeatures;
}
s_haveProcessorFeatures = 1;
s_processorCores = 1;
s_processorSockets = 1;
s_processorFeatures = 0x80000000;
ProcessorFeatures features;
if (!IOsGetProcessorFeatures(features)) {
s_processorVendor = 4;
} else {
if ((features.std_1d & 0x800000) != 0) {
s_processorFeatures |= 0x2;
}
if ((features.std_1d & 0x2000000) != 0) {
s_processorFeatures |= 0x4;
}
if ((features.ext_1d & 0x80000000) != 0) {
s_processorFeatures |= 0x8;
}
if ((features.std_1d & 0x4000000) != 0) {
s_processorFeatures |= 0x10;
}
auto vendorstring = reinterpret_cast<char*>(&features);
// Intel
if (!strncmp(vendorstring, s_vendorIDs, 12)) {
s_processorVendor = 1;
auto cores = (features.std_4a >> 0x1A);
if (features.std_0a >= 4 && cores) {
s_processorFeatures |= 0x40;
s_processorCores = cores + 1;
}
// AMD
} else if (!strncmp(vendorstring, s_vendorIDs + 12, 12)) {
s_processorVendor = 2;
auto cores = static_cast<uint8_t>(features.ext_8c);
if (cores) {
s_processorFeatures |= 0x40;
s_processorCores = cores + 1;
}
// Cyrix
} else if (!strncmp(vendorstring, s_vendorIDs + 24, 12)) {
// ???
// Centaur
} else if (!strncmp(vendorstring, s_vendorIDs + 36, 12)) {
// ???
}
IOsSystemCpuLog(features);
}
if (!IOsParseProcessorFrequency(reinterpret_cast<char*>(&features) + 44)) {
static int32_t s_checkedPowerProfInfo = 0;
static int32_t s_gotPowerProfFrequency = 0;
if (!s_checkedPowerProfInfo) {
s_gotPowerProfFrequency = IOsGetPowerProfFrequency();
s_checkedPowerProfInfo = 1;
}
if (!s_gotPowerProfFrequency) {
s_cpuTicksPerSecond = OsGetAsyncClocksPerSecond();
}
}
vendorID = s_processorVendor;
return s_processorFeatures;
}
uint64_t OsGetProcessorTicksPerSecond() {
if (!s_cpuTicksPerSecond) {
int32_t vendorID;
OsGetProcessorFeaturesEx(vendorID);
}
return s_cpuTicksPerSecond;
}
#endif

27
common/time/Time.hpp Normal file
View file

@ -0,0 +1,27 @@
#ifndef COMMON_TIME_TIME_HPP
#define COMMON_TIME_TIME_HPP
#include <cstdint>
enum TimingMethod {
NotSet = -1,
BestAvailable = 0,
// GetTickCount (Windows), mach_absolute_time (MacOS)
SystemMethod1 = 1,
// QueryPerformanceCounter (Windows), Carbon Microseconds (MacOS)
SystemMethod2 = 2
};
void OsTimeStartup(TimingMethod timingMethod);
void OsTimeShutdown();
uint64_t OsGetAsyncTimeMs();
uint64_t OsGetAsyncTimeMsPrecise();
int64_t OsGetAsyncClocksPerSecond();
void OsSleep(uint32_t duration);
#endif

View file

@ -0,0 +1,30 @@
#if defined(WHOA_SYSTEM_LINUX)
#include "common/time/Time.hpp"
#include <chrono>
#include <unistd.h>
void OsTimeStartup(TimingMethod timingMethod) {
// TODO
}
void OsTimeShutdown() {
// TODO
}
uint64_t OsGetAsyncTimeMsPrecise() {
auto now = std::chrono::steady_clock::now();
uint64_t ticks = std::chrono::duration_cast<std::chrono::milliseconds>(now.time_since_epoch()).count();
return ticks;
}
uint64_t OsGetAsyncTimeMs() {
return OsGetAsyncTimeMsPrecise();
}
void OsSleep(uint32_t duration) {
usleep(duration);
}
#endif

36
common/time/mac/Time.cpp Normal file
View file

@ -0,0 +1,36 @@
#if defined(WHOA_SYSTEM_MAC)
#include "common/time/Time.hpp"
#include "common/time/GetAsyncTimeMs.hpp"
#include <mach/mach_time.h>
#include <unistd.h>
void OsTimeStartup(TimingMethod timingMethod) {
// TODO
}
void OsTimeShutdown() {
// TODO
}
uint64_t OsGetAsyncTimeMsPrecise() {
static mach_timebase_info_data_t timebase;
if (timebase.denom == 0) {
mach_timebase_info(&timebase);
}
uint64_t ticks = mach_absolute_time();
return ticks * (timebase.numer / timebase.denom) / 100000;
}
uint64_t OsGetAsyncTimeMs() {
return OsGetAsyncTimeMsPrecise();
}
void OsSleep(uint32_t duration) {
usleep(duration);
}
#endif

52
common/time/win/Time.cpp Normal file
View file

@ -0,0 +1,52 @@
#if defined(WHOA_SYSTEM_WIN)
#include "common/time/Time.hpp"
#include "common/time/win/TimeManager.hpp"
#include <storm/Memory.hpp>
#include <windows.h>
static OsTimeManager* s_OsTimeMgr;
void OsTimeManagerCreate(TimingMethod timingMethod) {
auto m = SMemAlloc(sizeof(OsTimeManager), __FILE__, __LINE__, 0x8);
if (m) {
s_OsTimeMgr = new (m) OsTimeManager(timingMethod);
}
}
void OsTimeManagerDestroy() {
if (s_OsTimeMgr) {
SMemFree(s_OsTimeMgr, "delete", -1, 0x0);
s_OsTimeMgr = nullptr;
}
}
void OsTimeStartup(TimingMethod timingMethod) {
OsTimeManagerCreate(timingMethod);
}
void OsTimeShutdown() {
OsTimeManagerDestroy();
}
uint64_t OsGetAsyncTimeMsPrecise() {
return s_OsTimeMgr->Snapshot();
}
uint64_t OsGetAsyncTimeMs() {
return s_OsTimeMgr->Snapshot();
}
int64_t OsGetAsyncClocksPerSecond() {
if (s_OsTimeMgr->timingMethod == SystemMethod2) {
return s_OsTimeMgr->performanceFrequency;
} else {
return 1000LL;
}
}
void OsSleep(uint32_t duration) {
Sleep(duration);
}
#endif

View file

@ -0,0 +1,110 @@
#if defined(WHOA_SYSTEM_WIN)
#include "common/time/win/TimeManager.hpp"
#include "common/time/Time.hpp"
#include "common/processor/Processor.hpp"
#include <windows.h>
OsTimeManager::OsTimeManager(TimingMethod tm) {
this->timingMethod = NotSet;
auto method = this->Calibrate();
if (tm != BestAvailable && method != timingMethod) {
if (tm == SystemMethod2 && method == SystemMethod1) {
this->timingTestError = 5;
}
method = tm;
}
this->timingMethod = method;
auto freq = method == SystemMethod2 ? this->performanceFrequency : static_cast<int64_t>(1000LL);
this->scaleToMs = 1000.0 / static_cast<double>(freq);
this->timeBegin = 0;
}
TimingMethod OsTimeManager::Calibrate() {
if (!QueryPerformanceFrequency(reinterpret_cast<LARGE_INTEGER*>(&this->performanceFrequency))) {
this->timingTestError = 1;
return SystemMethod1;
}
if (this->performanceFrequency == 0) {
this->timingTestError = 2;
return SystemMethod1;
}
auto process = GetCurrentProcess();
auto thread = GetCurrentThread();
auto priorityClass = GetPriorityClass(process);
auto threadPriority = GetThreadPriority(thread);
SetPriorityClass(process, HIGH_PRIORITY_CLASS);
SetThreadPriority(thread, THREAD_PRIORITY_TIME_CRITICAL);
OsSleep(0);
this->timingTestError = 0;
DWORD tc1 = GetTickCount();
DWORD tc2 = tc1;
while (tc1 == tc2) {
tc2 = GetTickCount();
}
int64_t pc1;
int64_t pc2;
QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER*>(&pc1));
auto nproc = OsGetProcessorCount();
if (nproc > 1) {
DWORD_PTR processAffinityMask;
DWORD_PTR systemAffinityMask;
GetProcessAffinityMask(process, &processAffinityMask, &systemAffinityMask);
for (uint32_t i = 0; i < 512; i++) {
SetThreadAffinityMask(thread, 1 << static_cast<DWORD_PTR>(static_cast<uint8_t>(i % nproc) & 0x1F));
OsSleep(0);
QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER*>(&pc2));
if (pc2 <= pc1) {
this->timingTestError = 4;
break;
}
}
SetThreadAffinityMask(thread, processAffinityMask);
OsSleep(0);
}
if (this->timingTestError == 0) {
auto tc3 = GetTickCount();
while ((tc3 - tc2) < 0xFA) {
tc3 = GetTickCount();
}
auto tc4 = GetTickCount();
while (tc3 == tc4) {
tc4 = GetTickCount();
}
QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER*>(&pc2));
if (std::abs(tc4 - static_cast<int64_t>(static_cast<double>(pc2 - pc1) / this->performanceFrequency * 1000.0) - tc2) >= 5) {
this->timingTestError = 3;
}
}
SetPriorityClass(process, priorityClass);
SetThreadPriority(thread, threadPriority);
OsSleep(0);
return this->timingMethod == BestAvailable ? SystemMethod2 : SystemMethod1;
}
uint64_t OsTimeManager::Snapshot() {
if (this->timingMethod != SystemMethod2) {
return static_cast<uint64_t>((static_cast<double>(GetTickCount()) * this->scaleToMs) + this->timeBegin);
}
int64_t performanceCount;
QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER*>(&performanceCount));
return static_cast<uint64_t>((static_cast<double>(performanceCount) * this->scaleToMs) + this->timeBegin);
}
#endif

View file

@ -0,0 +1,19 @@
#ifndef COMMON_TIME_WIN_TIME_MANAGER_HPP
#define COMMON_TIME_WIN_TIME_MANAGER_HPP
#include "common/time/Time.hpp"
class OsTimeManager {
public:
double scaleToMs;
TimingMethod timingMethod;
uint32_t timingTestError;
int64_t performanceFrequency;
double timeBegin;
OsTimeManager(TimingMethod timingMethod);
TimingMethod Calibrate();
uint64_t Snapshot();
};
#endif