feat(build): add StormLib (#4)

* feat(app): add StormLib

* feat(app): add OpenArchives

* feat(util): update SFile to work with StormLib

* feat(app): update SFile

* feat(util): update SFile with logging (Windows only)

* feat(ui): implemented termination w/o notice

* chore(build): update StormLib

* chore(util): replace std::string with SStr* functions

* fix(stormlib): dwFlags argument for SFileOpenPatchArchive

* chore(ui): add Script_* stubs

* chore(util): clean up SFile::OpenEx

* chore(build): update StormLib

---------

Co-authored-by: Phaneron <superp00t@tutanota.com>
This commit is contained in:
VDm 2024-02-12 02:19:18 +04:00 committed by GitHub
parent c5e0034604
commit f86f6d6d09
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
323 changed files with 73232 additions and 75 deletions

539
vendor/stormlib-9/src/adpcm/adpcm.cpp vendored Normal file
View file

@ -0,0 +1,539 @@
/*****************************************************************************/
/* adpcm.cpp Copyright (c) Ladislav Zezula 2003 */
/*---------------------------------------------------------------------------*/
/* This module contains implementation of adpcm decompression method used by */
/* Storm.dll to decompress WAVE files. Thanks to Tom Amigo for releasing */
/* his sources. */
/*---------------------------------------------------------------------------*/
/* Date Ver Who Comment */
/* -------- ---- --- ------- */
/* 11.03.03 1.00 Lad Splitted from Pkware.cpp */
/* 20.05.03 2.00 Lad Added compression */
/* 19.11.03 2.01 Dan Big endian handling */
/* 10.01.13 3.00 Lad Refactored, beautified, documented :-) */
/*****************************************************************************/
#include <assert.h>
#include <stddef.h>
#include "adpcm.h"
//-----------------------------------------------------------------------------
// Tables necessary dor decompression
static const int NextStepTable[] =
{
-1, 0, -1, 4, -1, 2, -1, 6,
-1, 1, -1, 5, -1, 3, -1, 7,
-1, 1, -1, 5, -1, 3, -1, 7,
-1, 2, -1, 4, -1, 6, -1, 8
};
static const int StepSizeTable[] =
{
7, 8, 9, 10, 11, 12, 13, 14,
16, 17, 19, 21, 23, 25, 28, 31,
34, 37, 41, 45, 50, 55, 60, 66,
73, 80, 88, 97, 107, 118, 130, 143,
157, 173, 190, 209, 230, 253, 279, 307,
337, 371, 408, 449, 494, 544, 598, 658,
724, 796, 876, 963, 1060, 1166, 1282, 1411,
1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024,
3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484,
7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794,
32767
};
//-----------------------------------------------------------------------------
// Helper class for writing output ADPCM data
class TADPCMStream
{
public:
TADPCMStream(void * pvBuffer, size_t cbBuffer)
{
pbBufferEnd = (unsigned char *)pvBuffer + cbBuffer;
pbBuffer = (unsigned char *)pvBuffer;
}
bool ReadByteSample(unsigned char & ByteSample)
{
// Check if there is enough space in the buffer
if(pbBuffer >= pbBufferEnd)
return false;
ByteSample = *pbBuffer++;
return true;
}
bool WriteByteSample(unsigned char ByteSample)
{
// Check if there is enough space in the buffer
if(pbBuffer >= pbBufferEnd)
return false;
*pbBuffer++ = ByteSample;
return true;
}
bool ReadWordSample(short & OneSample)
{
// Check if we have enough space in the output buffer
if((size_t)(pbBufferEnd - pbBuffer) < sizeof(short))
return false;
// Write the sample
OneSample = pbBuffer[0] + (((short)pbBuffer[1]) << 0x08);
pbBuffer += sizeof(short);
return true;
}
bool WriteWordSample(short OneSample)
{
// Check if we have enough space in the output buffer
if((size_t)(pbBufferEnd - pbBuffer) < sizeof(short))
return false;
// Write the sample
*pbBuffer++ = (unsigned char)(OneSample & 0xFF);
*pbBuffer++ = (unsigned char)(OneSample >> 0x08);
return true;
}
int LengthProcessed(void * pvOutBuffer)
{
return (int)((unsigned char *)pbBuffer - (unsigned char *)pvOutBuffer);
}
unsigned char * pbBufferEnd;
unsigned char * pbBuffer;
};
//----------------------------------------------------------------------------
// Local functions
static inline short GetNextStepIndex(int StepIndex, unsigned int EncodedSample)
{
// Get the next step index
StepIndex = StepIndex + NextStepTable[EncodedSample & 0x1F];
// Don't make the step index overflow
if(StepIndex < 0)
StepIndex = 0;
else if(StepIndex > 88)
StepIndex = 88;
return (short)StepIndex;
}
static inline int UpdatePredictedSample(int PredictedSample, int EncodedSample, int Difference, int BitMask = 0x40)
{
// Is the sign bit set?
if(EncodedSample & BitMask)
{
PredictedSample -= Difference;
if(PredictedSample <= -32768)
PredictedSample = -32768;
}
else
{
PredictedSample += Difference;
if(PredictedSample >= 32767)
PredictedSample = 32767;
}
return PredictedSample;
}
static inline int DecodeSample(int PredictedSample, int EncodedSample, int StepSize, int Difference)
{
if(EncodedSample & 0x01)
Difference += (StepSize >> 0);
if(EncodedSample & 0x02)
Difference += (StepSize >> 1);
if(EncodedSample & 0x04)
Difference += (StepSize >> 2);
if(EncodedSample & 0x08)
Difference += (StepSize >> 3);
if(EncodedSample & 0x10)
Difference += (StepSize >> 4);
if(EncodedSample & 0x20)
Difference += (StepSize >> 5);
return UpdatePredictedSample(PredictedSample, EncodedSample, Difference);
}
//----------------------------------------------------------------------------
// Compression routine
int CompressADPCM(void * pvOutBuffer, int cbOutBuffer, void * pvInBuffer, int cbInBuffer, int ChannelCount, int CompressionLevel)
{
TADPCMStream os(pvOutBuffer, cbOutBuffer); // The output stream
TADPCMStream is(pvInBuffer, cbInBuffer); // The input stream
unsigned char BitShift = (unsigned char)(CompressionLevel - 1);
short PredictedSamples[MAX_ADPCM_CHANNEL_COUNT];// Predicted samples for each channel
short StepIndexes[MAX_ADPCM_CHANNEL_COUNT]; // Step indexes for each channel
short InputSample; // Input sample for the current channel
int TotalStepSize;
int ChannelIndex;
int AbsDifference;
int Difference;
int MaxBitMask;
int StepSize;
// First byte in the output stream contains zero. The second one contains the compression level
os.WriteByteSample(0);
if(!os.WriteByteSample(BitShift))
return 2;
// Set the initial step index for each channel
PredictedSamples[0] = PredictedSamples[1] = 0;
StepIndexes[0] = StepIndexes[1] = INITIAL_ADPCM_STEP_INDEX;
// Next, InitialSample value for each channel follows
for(int i = 0; i < ChannelCount; i++)
{
// Get the initial sample from the input stream
if(!is.ReadWordSample(InputSample))
return os.LengthProcessed(pvOutBuffer);
// Store the initial sample to our sample array
PredictedSamples[i] = InputSample;
// Also store the loaded sample to the output stream
if(!os.WriteWordSample(InputSample))
return os.LengthProcessed(pvOutBuffer);
}
// Get the initial index
ChannelIndex = ChannelCount - 1;
// Now keep reading the input data as long as there is something in the input buffer
while(is.ReadWordSample(InputSample))
{
int EncodedSample = 0;
// If we have two channels, we need to flip the channel index
ChannelIndex = (ChannelIndex + 1) % ChannelCount;
// Get the difference from the previous sample.
// If the difference is negative, set the sign bit to the encoded sample
AbsDifference = InputSample - PredictedSamples[ChannelIndex];
if(AbsDifference < 0)
{
AbsDifference = -AbsDifference;
EncodedSample |= 0x40;
}
// If the difference is too low (higher that difference treshold),
// write a step index modifier marker
StepSize = StepSizeTable[StepIndexes[ChannelIndex]];
if(AbsDifference < (StepSize >> CompressionLevel))
{
if(StepIndexes[ChannelIndex] != 0)
StepIndexes[ChannelIndex]--;
os.WriteByteSample(0x80);
}
else
{
// If the difference is too high, write marker that
// indicates increase in step size
while(AbsDifference > (StepSize << 1))
{
if(StepIndexes[ChannelIndex] >= 0x58)
break;
// Modify the step index
StepIndexes[ChannelIndex] += 8;
if(StepIndexes[ChannelIndex] > 0x58)
StepIndexes[ChannelIndex] = 0x58;
// Write the "modify step index" marker
StepSize = StepSizeTable[StepIndexes[ChannelIndex]];
os.WriteByteSample(0x81);
}
// Get the limit bit value
MaxBitMask = (1 << (BitShift - 1));
MaxBitMask = (MaxBitMask > 0x20) ? 0x20 : MaxBitMask;
Difference = StepSize >> BitShift;
TotalStepSize = 0;
for(int BitVal = 0x01; BitVal <= MaxBitMask; BitVal <<= 1)
{
if((TotalStepSize + StepSize) <= AbsDifference)
{
TotalStepSize += StepSize;
EncodedSample |= BitVal;
}
StepSize >>= 1;
}
PredictedSamples[ChannelIndex] = (short)UpdatePredictedSample(PredictedSamples[ChannelIndex],
EncodedSample,
Difference + TotalStepSize);
// Write the encoded sample to the output stream
if(!os.WriteByteSample((unsigned char)EncodedSample))
break;
// Calculates the step index to use for the next encode
StepIndexes[ChannelIndex] = GetNextStepIndex(StepIndexes[ChannelIndex], EncodedSample);
}
}
return os.LengthProcessed(pvOutBuffer);
}
//----------------------------------------------------------------------------
// Decompression routine
int DecompressADPCM(void * pvOutBuffer, int cbOutBuffer, void * pvInBuffer, int cbInBuffer, int ChannelCount)
{
TADPCMStream os(pvOutBuffer, cbOutBuffer); // Output stream
TADPCMStream is(pvInBuffer, cbInBuffer); // Input stream
unsigned char EncodedSample;
unsigned char BitShift;
short PredictedSamples[MAX_ADPCM_CHANNEL_COUNT]; // Predicted sample for each channel
short StepIndexes[MAX_ADPCM_CHANNEL_COUNT]; // Predicted step index for each channel
int ChannelIndex; // Current channel index
// Initialize the StepIndex for each channel
PredictedSamples[0] = PredictedSamples[1] = 0;
StepIndexes[0] = StepIndexes[1] = INITIAL_ADPCM_STEP_INDEX;
// The first byte is always zero, the second one contains bit shift (compression level - 1)
is.ReadByteSample(BitShift);
is.ReadByteSample(BitShift);
// Next, InitialSample value for each channel follows
for(int i = 0; i < ChannelCount; i++)
{
// Get the initial sample from the input stream
short InitialSample;
// Attempt to read the initial sample
if(!is.ReadWordSample(InitialSample))
return os.LengthProcessed(pvOutBuffer);
// Store the initial sample to our sample array
PredictedSamples[i] = InitialSample;
// Also store the loaded sample to the output stream
if(!os.WriteWordSample(InitialSample))
return os.LengthProcessed(pvOutBuffer);
}
// Get the initial index
ChannelIndex = ChannelCount - 1;
// Keep reading as long as there is something in the input buffer
while(is.ReadByteSample(EncodedSample))
{
// If we have two channels, we need to flip the channel index
ChannelIndex = (ChannelIndex + 1) % ChannelCount;
if(EncodedSample == 0x80)
{
if(StepIndexes[ChannelIndex] != 0)
StepIndexes[ChannelIndex]--;
if(!os.WriteWordSample(PredictedSamples[ChannelIndex]))
return os.LengthProcessed(pvOutBuffer);
}
else if(EncodedSample == 0x81)
{
// Modify the step index
StepIndexes[ChannelIndex] += 8;
if(StepIndexes[ChannelIndex] > 0x58)
StepIndexes[ChannelIndex] = 0x58;
// Next pass, keep going on the same channel
ChannelIndex = (ChannelIndex + 1) % ChannelCount;
}
else
{
int StepIndex = StepIndexes[ChannelIndex];
int StepSize = StepSizeTable[StepIndex];
// Encode one sample
PredictedSamples[ChannelIndex] = (short)DecodeSample(PredictedSamples[ChannelIndex],
EncodedSample,
StepSize,
StepSize >> BitShift);
// Write the decoded sample to the output stream
if(!os.WriteWordSample(PredictedSamples[ChannelIndex]))
break;
// Calculates the step index to use for the next encode
StepIndexes[ChannelIndex] = GetNextStepIndex(StepIndex, EncodedSample);
}
}
// Return total bytes written since beginning of the output buffer
return os.LengthProcessed(pvOutBuffer);
}
//-----------------------------------------------------------------------------
// ADPCM decompression present in Starcraft I BETA
typedef struct _ADPCM_DATA
{
const unsigned int * pValues;
int BitCount;
int field_8;
int field_C;
int field_10;
} ADPCM_DATA, *PADPCM_DATA;
static const unsigned int adpcm_values_2[] = {0x33, 0x66};
static const unsigned int adpcm_values_3[] = {0x3A, 0x3A, 0x50, 0x70};
static const unsigned int adpcm_values_4[] = {0x3A, 0x3A, 0x3A, 0x3A, 0x4D, 0x66, 0x80, 0x9A};
static const unsigned int adpcm_values_6[] =
{
0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A,
0x46, 0x53, 0x60, 0x6D, 0x7A, 0x86, 0x93, 0xA0, 0xAD, 0xBA, 0xC6, 0xD3, 0xE0, 0xED, 0xFA, 0x106
};
static const unsigned int * InitAdpcmData(PADPCM_DATA pData, unsigned char BitCount)
{
switch(BitCount)
{
case 2:
pData->pValues = adpcm_values_2;
break;
case 3:
pData->pValues = adpcm_values_3;
break;
case 4:
pData->pValues = adpcm_values_4;
break;
default:
pData->pValues = NULL;
break;
case 6:
pData->pValues = adpcm_values_6;
break;
}
pData->BitCount = BitCount;
pData->field_C = 0x20000;
pData->field_8 = 1 << BitCount;
pData->field_10 = (1 << BitCount) / 2;
return pData->pValues;
}
int DecompressADPCM_SC1B(void * pvOutBuffer, int cbOutBuffer, void * pvInBuffer, int cbInBuffer, int ChannelCount)
{
TADPCMStream os(pvOutBuffer, cbOutBuffer); // Output stream
TADPCMStream is(pvInBuffer, cbInBuffer); // Input stream
ADPCM_DATA AdpcmData;
int LowBitValues[MAX_ADPCM_CHANNEL_COUNT];
int UpperBits[MAX_ADPCM_CHANNEL_COUNT];
int BitMasks[MAX_ADPCM_CHANNEL_COUNT];
int PredictedSamples[MAX_ADPCM_CHANNEL_COUNT];
int ChannelIndex;
int ChannelIndexMax;
int OutputSample;
unsigned char BitCount;
unsigned char EncodedSample;
short InputValue16;
int reg_eax;
int Difference;
// The first byte contains number of bits
if(!is.ReadByteSample(BitCount))
return os.LengthProcessed(pvOutBuffer);
if(!InitAdpcmData(&AdpcmData, BitCount))
return os.LengthProcessed(pvOutBuffer);
assert(AdpcmData.pValues != NULL);
// Init bit values
for(int i = 0; i < ChannelCount; i++)
{
unsigned char OneByte;
if(!is.ReadByteSample(OneByte))
return os.LengthProcessed(pvOutBuffer);
LowBitValues[i] = OneByte & 0x01;
UpperBits[i] = OneByte >> 1;
}
//
for(int i = 0; i < ChannelCount; i++)
{
if(!is.ReadWordSample(InputValue16))
return os.LengthProcessed(pvOutBuffer);
BitMasks[i] = InputValue16 << AdpcmData.BitCount;
}
// Next, InitialSample value for each channel follows
for(int i = 0; i < ChannelCount; i++)
{
if(!is.ReadWordSample(InputValue16))
return os.LengthProcessed(pvOutBuffer);
PredictedSamples[i] = InputValue16;
os.WriteWordSample(InputValue16);
}
// Get the initial index
ChannelIndexMax = ChannelCount - 1;
ChannelIndex = 0;
// Keep reading as long as there is something in the input buffer
while(is.ReadByteSample(EncodedSample))
{
reg_eax = ((PredictedSamples[ChannelIndex] * 3) << 3) - PredictedSamples[ChannelIndex];
PredictedSamples[ChannelIndex] = ((reg_eax * 10) + 0x80) >> 8;
Difference = (((EncodedSample >> 1) + 1) * BitMasks[ChannelIndex] + AdpcmData.field_10) >> AdpcmData.BitCount;
PredictedSamples[ChannelIndex] = UpdatePredictedSample(PredictedSamples[ChannelIndex], EncodedSample, Difference, 0x01);
BitMasks[ChannelIndex] = (AdpcmData.pValues[EncodedSample >> 1] * BitMasks[ChannelIndex] + 0x80) >> 6;
if(BitMasks[ChannelIndex] < AdpcmData.field_8)
BitMasks[ChannelIndex] = AdpcmData.field_8;
if(BitMasks[ChannelIndex] > AdpcmData.field_C)
BitMasks[ChannelIndex] = AdpcmData.field_C;
reg_eax = (cbInBuffer - is.LengthProcessed(pvInBuffer)) >> ChannelIndexMax;
OutputSample = PredictedSamples[ChannelIndex];
if(reg_eax < UpperBits[ChannelIndex])
{
if(LowBitValues[ChannelIndex])
{
OutputSample += (UpperBits[ChannelIndex] - reg_eax);
if(OutputSample > 32767)
OutputSample = 32767;
}
else
{
OutputSample += (reg_eax - UpperBits[ChannelIndex]);
if(OutputSample < -32768)
OutputSample = -32768;
}
}
// Write the word sample and swap channel
os.WriteWordSample((short)(OutputSample));
ChannelIndex = (ChannelIndex + 1) % ChannelCount;
}
return os.LengthProcessed(pvOutBuffer);
}

27
vendor/stormlib-9/src/adpcm/adpcm.h vendored Normal file
View file

@ -0,0 +1,27 @@
/*****************************************************************************/
/* adpcm.h Copyright (c) Ladislav Zezula 2003 */
/*---------------------------------------------------------------------------*/
/* Header file for adpcm decompress functions */
/*---------------------------------------------------------------------------*/
/* Date Ver Who Comment */
/* -------- ---- --- ------- */
/* 31.03.03 1.00 Lad The first version of adpcm.h */
/*****************************************************************************/
#ifndef __ADPCM_H__
#define __ADPCM_H__
//-----------------------------------------------------------------------------
// Defines
#define MAX_ADPCM_CHANNEL_COUNT 2
#define INITIAL_ADPCM_STEP_INDEX 0x2C
//-----------------------------------------------------------------------------
// Public functions
int CompressADPCM (void * pvOutBuffer, int dwOutLength, void * pvInBuffer, int dwInLength, int nCmpType, int ChannelCount);
int DecompressADPCM (void * pvOutBuffer, int dwOutLength, void * pvInBuffer, int dwInLength, int ChannelCount);
int DecompressADPCM_SC1B(void * pvOutBuffer, int cbOutBuffer, void * pvInBuffer, int cbInBuffer, int ChannelCount);
#endif // __ADPCM_H__